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a b s t r a c t

Active bilayer structures have great potential applications in the fields of drug delivery, soft robots
and actuators. In this paper, we have investigated the phase transition and optimal actuation of
bilayer structures under biaxial active strains. A theoretical model is developed to predict the bending
curvature of the bilayer in the large deformation regime, instead of the traditional Timoshenko’s
buckling solution. A Riks path-following procedure in the finite element method is utilized to trace
the active-strain induced snap-through instability to identify the phase boundaries of bistability in the
bilayer. The phase transition diagram from bistability to monostability and the general requisites to
generate a snap-through instability by varying active strains are thoroughly discussed based on the
bending curvature and energy landscape from simulations. Using the average curvature to characterize
the actuation efficiency, we find that the anisotropy of active strains can be utilized to tune the
bending angle and configuration of bilayer structures. The presented model and the obtained phase
diagram provide a potential guidance for future design of high-performance bilayer-based actuators
and machines in a broad range of applications.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Active bilayer structures hold promise for important appli-
cations in the fields of drug delivery, soft robotics, sensors and
actuators [1–6]. In an active bilayer, two layers with distinct
stimuli-responsive expansion or shrinkage properties are bonded
together to form a composite shell structure. A bilayer can bend
due to the mismatch strains induced by the expansion or shrink-
age of the active layers, leading to various functions in both natu-
ral and synthetic systems [7–13]. For example, the scales of pine
cones, consisting of two distinct layers with different angles of
microfibrils in cells, can open and close in response to the change
of humidity to spread seeds. The seed capsule of the ice plant is
also a bilayer-like structure composed of an unresponsive valve
and an active hygroscopic keel, which is able to unfold to achieve
seed dispersal when sufficiently hydrated with water [14]. In-
spired by the active bending phenomena of bilayers in nature,
various engineered bilayers have been synthesized and utilized
in developing soft robotics [6] and actuators [2]. A wide range
of materials can be used as the actuation parts in bilayers, such
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as thermo-responsive liquid crystal elastomers [15,16], thermo-
responsive hydrogels [1,17,18], magneto-responsive bioinspired
composites [5], and heat shrinkable polymer sheets [19]. With-
out losing their intrinsic physics, the various stimuli responsible
for the actuation mechanism in bilayers are often modeled as
prescribed active strains [9,20,21].

The bending behaviors of active bilayers have attracted great
attentions, in particularly for the cases of two-dimensional (2D)
bilayer beams under the condition of small deformations. In a
pioneering work of this problem, Stoney revealed a linear relation
between the curvature and the film stress in metal deposited
film–substrate bilayers [22]. Later, Timoshenko studied the re-
lation between bending curvature and stress distribution in 2D
bi-metal thermostats upon heating [21]. His solution can be re-
duced to the Stoney’s one when the top film of the bilayer is much
thinner than its substrate. Earlier experimental and theoretical
explorations on this topic can refer to the literature [23]. More
recently, the two classical theories have been extended to analyze
the relation between bending curvature, stress and active strain,
including the cases with nonuniform substrate thicknesses and
misfit strains [24], multi-layer thin films deposited on a sub-
strate [7], nanosized bilayers with surface stresses [25], bilayers
with thin substrates and large deformations [26], as well as
pre-stretch bilayers [27].
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In the bending of a three-dimensional (3D) active bilayer plate,
bifurcation may occur, transitioning the bilayer from a spherical
shape to a cylindrical one [28]. In Masters and Salamon’s work,
they systematically investigated the bending of free, rectangular,
isotropic and thin bilayers by using both theoretical and finite ele-
ment (FE) methods [8,29,30]. In addition, much efforts have been
directed toward understanding the bifurcation phenomena based
on different bilayer geometries, such as circular bilayers [10],
thin rectangular bilayers with preferential bending [31], polygon
bilayers [32] and thin sheets of arbitrary shapes under isotropic
in-plane expansion [33]. By applying the energy method, the
effects of layer geometry, plasticity and compositional gradient
on the bifurcation points have been examined [34]. Recently, a
non-Euclidean theory was presented to model the bending and
twisting behaviors of bilayer structures, in which the strain com-
ponents were defined as the fundamental forms of a deformed
surface to describe arbitrary large rotation of the bilayer [35,36].

The bistability of bilayers under large active strain has techno-
logically important applications in the design of bistable actuators
with fast speed, large output force and binary-state switch [37,
38]. For instance, a square bilayer with isotropic active strains
may evolve into a state with two stable cylindrical equilibrium
shapes after shape bifurcation [8,28]. The bistability of square
bilayers under active surface stresses could be controlled by
two dimensionless parameters [39]. Alben et al. found that two
stable equilibria did exist in a rectangular active bilayer and the
spiral state was energetically preferred [31]. Although significant
progress on the self-bending of bilayers has been made over the
years, two fundamental problems remain unsolved: how is the
bistability of a bilayer determined by the active strains? and
how can we utilize active strains to achieve a highly efficient
and optimal actuation? The answers to these questions can help
design efficient bilayer-based bistable actuators and implement
fast shape transition (i.e., snap-through) via active strain mod-
ulation. It is also useful to explain the bending/unbending phe-
nomena encountered in bilayer structures in nature and to invent
biomimetic materials and structures with improved functions.
Additionally, the effect of anisotropic active strains has been
addressed recently [40,41], however, the influence of anisotropic
strains on the bistability transition remains unclear. The bending
of 3D bilayers cannot be analyzed directly by the traditional Tim-
oshenko’s solution, which has been used for bilayer beams [42,
43].

In this paper, we study the bending behavior of a rectangular
3D bilayer plate by using the energy method and a Riks-based FE
method. Similar to previous works reported [8,10,26,29,35,39,44],
we employ a linear elastic constitutive model to characterize the
material behaviors for the active strain less than 10%. The tradi-
tional Timoshenko’s solution for a bilayer beam is extended to
the case of large active strain by introducing the nonlinear effect
of the axial stretch on the bending curvature in the formulation.
The theoretical and numerical results are compared to examine
the accuracy of the bilayer model. The snap-through instability
and the critical transition from bistable state to monostable state
have been analyzed using a two-loading-stage strategy in the
FE procedure. A phase diagram for determining the bistability
of a bilayer structure under different geometrical parameters
and material properties has been presented. The methods for
achieving snap-through and the optimal actuation for the bilayer
are discussed.

This paper is organized as follows. In Section 2, we intro-
duce the theoretical and numerical methods for analyzing active
bilayers. In Section 3, the bending behaviors of bilayer beams
and plates are studied. The phase transition of bistability and
the corresponding snap-through behaviors for a representative
bilayer are then discussed. In Section 4, the phase diagrams
for determining the bistability and monostability states of the
bilayer are presented and the optimal actuation strategies are
summarized. Finally, concluding remarks are given in Section 5.

Fig. 1. Schematic illustration of a bilayer structure.

2. Model

2.1. Formulation

To analyze the bending of a bilayer structure, we develop a
theoretical model based on the minimization of free energy [10,
30]. The following assumptions are made: (1) the material is lin-
ear elastic because the considered 3D bending cases have active
strains less than 10%; (2) the thickness of the bilayer is much
smaller than its width and length such that the stress components
in the thickness direction are ignored; (3) the interface of the
two layers is perfectly bonded; (4) no wrinkle emerges on the
bilayer surface; and (5) only the active strain components in the
in-plane directions are considered. The strain energy function of
the bilayer structure (Fig. 1) can be expressed as

U =
1
2

∫ L2
2

−
L2
2

∫ L1
2

−
L1
2

(∫ 0

−ha
εa: Ca: εa dz +

∫ hp

0
εp: Cp: εp dz

)
dxdy

(1)

where C is the elastic constitutive tensor with components Cijkl =

2µδikδjl +
2µλ

2µ+λ
δijδkl, µ and λ are Lamé’s constants, ε is the elastic

strain tensor, the subscripts ‘a’ and ‘p’ represent quantities of
the active and passive layers, respectively, L1, L2 and h are the
dimensions of the bilayer structure (Fig. 1). For convenience of
calculation, the plane z = 0 is set at the interface of the two
layers. The strain tensors in the passive and active layers are,
respectively, defined as

εp =
1
2
(a − I) − zb, εa =

1
2
(a − I) − zb − α (2)

where a and b are the first and second fundamental forms of the
bilayer, respectively, and are defined as [45]

a =

[
rx · rx rx · ry
ry · rx ry · ry

]
, b =

[
rxx · n rxy · n
ryx · n ryy · n

]
,

n =
rx × ry

∥rx × ry∥

(3)

where r = r(x, y) is the parametric equation for characterizing
the deformed shape of the bilayer, n is the unit vector normal to
the surface, rij represents the derivatives of r with respect to the
coordinates, e.g., rx =

∂r
∂x , rxx =

∂2r
∂x2

. α = diag(αx, αy) is the active
strain whose components αx and αy are assumed to be uniformly
distributed, I is the identity tensor. The shear components of α
are not considered in this work, which may induce helical shapes
for the bilayers with large length-to-width ratios [44].

As for the deformed shape of a bilayer, some researchers have
employed polynomial [10,23,30] or parametric equations [39]
to approximate its deformed shape. Here, we construct a four-
parameter equation r = r(x, y) through a composition of two
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circular parametric equations in the x and y directions

r = r (x, y)

=

{
r1 sin

(
λ1x
r1

)
, r2 sin

(
λ2y
r2

)
, r1 + r2 − r1 cos

(
λ1x
r1

)
− r2 cos

(
λ2y
r2

)}T
(4)

where λ1 and λ2 are the stretches in the x and y directions, r1
and r2 are the corresponding radii of the circles. In Eq. (4), the
effects of the axial stretches λ1 and λ2 on the deformation are
considered, which will facilitate the accurate characterization of
the large bending behaviors of the bilayer. The reduced form of
Eq. (4) in the 2D case is the parametric equation of a circle, which
accurately describes the deformed shape of a 2D bilayer beam.
Substituting Eq. (4) into (3), a and b can be obtained as

a =

⎡⎢⎢⎣ λ2
1 λ1λ2 sin

(
λ1x
r1

)
sin

(
λ2y
r2

)
λ1λ2 sin

(
λ1x
r1

)
sin

(
λ2y
r2

)
λ2
2

⎤⎥⎥⎦ ,

b =

⎡⎢⎢⎣
λ2
1

r1fb
cos

(
λ2y
r2

)
0

0
λ2
2

r2fb
cos

(
λ1x
r1

)
⎤⎥⎥⎦

(5)

where

fb =

√
− cos2

(
λ1x
r1

)
cos2

(
λ2y
r2

)
+ cos2

(
λ1x
r1

)
+ cos2

(
λ2y
r2

)
. It can

be proved that a and b satisfy the Gauss–Codazzi equations [45]
and thus are geometrically compatible.

Since the energy functional in Eq. (1) is integrable, we express
ε (excluding α) through the first-order approximation:

ε =

[
ε1 0
0 ε2

]
− z

[
(2ε1 + 1) κ1 0

0 (2ε2 + 1) κ2

]
(6)

and the third-order expansion at the origin (0, 0)

ε =

[
ε1 xyκ1κ2(2ε1 + 1)(2ε2 + 1)

xyκ1κ2(2ε1 + 1)(2ε2 + 1) ε2

]
− z

[
κxx 0
0 κyy

]
(7)

where the axial strain components satisfy ε1 =
1
2 (λ

2
1 − 1), ε2 =

1
2 (λ

2
2 − 1), and the curvature components κ1 =

1
r1
, κ2 =

1
r2

κxx = −
1
2κ1κ

2
2y

2(2ε1 + 1)(2ε2 + 1) + (2ε1 + 1)κ1, and κyy =

−
1
2κ2κ

2
1 x

2(2ε1 + 1)(2ε2 + 1) + (2ε2 + 1)κ2. From Eq. (5), it can
be verified that the principal curvatures at the origin (0, 0, 0) are
κ1 and κ2. Note that ε1, ε2, κ1, and κ2 are measured at the interface
between the two layers, i.e., z = 0.

As another feasible route to obtain an integrable functional,
we can substitute Eq. (5) into Eqs. (1) and (2), and then perform a
Taylor series expansion on the entire integrand. After substituting
Eq. (7) into (1), an energy functional defined with regard to ε1, ε2,
κ1, and κ2 can be obtained. A derivative with respect to the four
parameters leads to the equilibrium equations

∂U
∂ε1

= 0,
∂U
∂ε2

= 0,
∂U
∂κ1

= 0,
∂U
∂κ2

= 0 (8)

The stability of the solution can be determined by the determi-
nant of the Hessian matrix of U [46].

2.2. Numerical method

We implement the elastic constitutive equation in the pre-
viously developed Riks method-based finite element (FE) proce-
dure [47] to simulate the bending of the bilayer

S = C: (E − α) (9)

where S is the second Piola–Kirchhoff stress, E is the Green strain,
and C and α are linearly elastic constitutive tensor and the active
strain, respectively. The FE analysis permits the characterization
of large bending deformation with nonuniform distribution of
strain and curvature, and the Riks method provides advantages
to precisely capture the phase boundary (PB) and critical shapes
before and after shape transition (i.e., snap-through). If bending
contribution zb in the strain tensor in Eq. (2) is ignored, it reduced
to the strain at z = 0 and has the same form as the Green strain
E. Therefore, the constitutive models used in the analytical and
numerical analysis are compatible with each other. In simulation,
α increases incrementally following α = δα, where δ is a scalar
characterizing the magnitude of α and α = diag(α1, α2) is a fixed
pattern tensor characterizing its distribution. If uniform active
strain is considered, α1 and α2 are constants in the active layer.

The linearized balanced equation in the FE procedure can be
generally expressed as [47]

K∆w = ∆δfs − fint (10)

where ∆w and ∆δ are increments of the displacement vector and
the scalar factor to be solved, K is the stiffness matrix, fint is the
internal force, and fs is an equivalent body force induced by the
pattern tensor α. The balance equation is solved by combining a
supplementary arc-length equation

∆w · ∆w + ∆δ2 = ρ2 (11)

where ρ is the arc length. Compared to the traditional Newton–
Raphson scheme, the step size is controlled by ρ rather than by
a prescribed change in the history of the scalar factor δ. It can
be conferred that the total equivalent body force ∆δfs in the
linearized equation plays a role in driving the deformation of
the bilayer. Thus, within the solution scheme, the scalar factor
δ and the displacement vector are updated automatically, which
enables tracking of the nonmonotonic equilibrium path during
the snap-through process [47,48]. From the simulated relation
between the active strain and deformed shape, we can iden-
tify the location of the limit point, where the change rate of
the active strain is vanished and can thus precisely determine
the critical active strain for the transition from bistability to
monostability. In the calculations, eight-nodes quadrilateral and
twenty-nodes hexagonal elements are developed in our in-house
codes to model 2D and 3D problems, respectively.

3. Representative solutions for bilayer structures

3.1. 2D bilayer beams

For bilayer beams, the parametric Eq. (4) can be simplified as

r = r(x) =

{
r1 sin

(
λ1x
r1

)
, 0, r1 − r1 cos

(
λ1x
r1

)}T
, representing a

perfect circular arc. The nonvanishing strain component in Eq. (6)
becomes εxx = ε1 − zκ1(2ε1 + 1) = ε1 − zκ1λ

2
1. It is noted

that a direct calculation based on Eq. (3) can also obtain the
same εxx in this case. Since εxx depends on the z-coordinate, we
calculate the integration in Eq. (1) in the z direction, and let its
derivatives with respect to ε1 and κ1 vanish. Then, we obtain the
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nondimensionalized curvature

κM = κ1h

=
6αmn (1 + n)2

m2n4 + 4mn3 + 6mn2 + 4mn + 1 + 8αmn3 + 6αmn2 + 2α
(12)

and the corresponding axial strain

εM =
α(4mn3

+ 3mn2
+ 1)

m2n4 + 4mn3 + 6mn2 + 4mn + 1
(13)

where the nondimensional parameters satisfy m =
Ep
Ea
, n =

hp
ha
,

and h = h1 + h2 is the total thickness of the bilayer. In the case
of small ε1, εxx is simplified as εxx = ε1 − zκ1. Then, based on the
same procedure, we obtain the Timoshenko’s solution [21]

κT =
κTh
α

=
6mn (1 + n)2

m2n4 + 4mn3 + 6mn2 + 4mn + 1
, εT = εM

(14)

It can be seen that Eq. (12) will reduce to the Timoshenko’s
solution in Eq. (14) when α in the denominator of Eq. (12) is
set to be zero. Therefore, these additional terms are induced by
the effect of axial stretch λ1 on the curvature κ1. As shown in
Figs. 2a and b, the modified curvature in Eq. (12) shows significant
discrepancies with the Timoshenko’s solution, especially for large
values of α. When |α| < 5%, the two groups of solutions are
almost identical. The FE solutions show a better agreement with
the new modified solutions than the Timoshenko’s solutions for
the entire range of α, indicating the validity of Eq. (12). For the
Timoshenko’s solution, the curvature changes linearly with α,
while the modified one varies nonlinearly. Also, if the same de-
grees of expansion or shrinkage are applied in the active layer, the
Timoshenko’s solution will predict an equal bending degree for
the bilayer, while the modified solution will give a larger bending
degree in expansion than that in shrinkage. In the case α > 0, it
can be seen from Eqs. (12)∼(14) or Fig. 2a and b that the modified
solution has a smaller curvature than the Timoshenko’s solution,
which means that the former one predicts a larger bending degree
than the latter one due to the effects of the axial strain, and vice
versa.

With the analytical solution Eq. (12), we can determine the
parameters m and n for the largest bending degree. Taking the
derivative with respect to m in Eq. (12), it is demonstrated that
κM reaches the maximum value when mn2

=
√
2α + 1. In real

applications, it is difficult to adjust the material constantsm and n
to meet the condition ofmn2

=
√
2α + 1, because α varies during

the deformation process. To obtain a usable optimal solution for
realistic applications, we assume α is small and taken a derivative
with respect to m in Eq. (14), then it can be proved that κT gets its
maximum value, κT ,max = 1.5, when mn2

= 1 (or log(mn2) = 0
or E1h2

1 = E2h2
2). Thus, to achieve the most efficient actuation (the

largest bending degree), the material parameter Eh2 should be
equal in the active and passive layers. The distribution of κT in
Fig. 2c also verifies the same results. Recently, Kim et al. inves-
tigated the bending of hydrogel bilayers with different thickness
ratios [43], and they found that the sample with equal thickness
provides the largest bending curvature, i.e., h1 ≈ h2. They used
the same kind of hydrogels in the passive and active layers, so
the bilayer has almost equal modulus in each layer, i.e., E1 ≈ E2.
In their experiments, the case of E1h2

1 = E2h2
2 described in our

analysis was further demonstrated to give an optimal bending
performance. However, experimental demonstrations for other
cases with both different E and h are still lacking.

3.2. 3D bilayer plates

In this case, a square-shaped bilayer plate with L1 = L2 = L
is considered. By introducing the variables m =

Ep
Ea
, n =

hp
ha
,

p =
L
h =

L
h1+h2

and a parameter assemble ζ = (m, n, p, νa, νp), the
energy functional in Eq. (1) is expressed in a nondimensionalized
form as

U =
U

EL2h
= U(ε1, ε1, κ1, κ2, ζ, α) (15)

where E = (Ea + Ep)/2 and κ = κh. Based on the first order
approximation of the strain in Eq. (6), we can obtain analytical
solutions for certain specific cases. We first consider the spherical
case before the shape bifurcation, where isotropic active strains
are present in the structure and the curvature has uniform dis-
tribution, i.e., α1 = α2 = α and κ1 = κ2 = κ0, ε1 = ε2 = ε0.
Note that in this case m is defined by m =

Ep
Ea

with Ep =
Ep

1−ν1
,

Ea =
Ea

1−ν1
, so that we can eliminate the Poisson’s ratio ν in

Eq. (15). Based on the standard minimization procedure of elastic
strain energy, we obtain

κ0 = κ0h

=
6αmn (1 + n)2

m2n4 + 4mn3 + 6mn2 + 4mn + 1 + 8αmn3 + 6αmn2 + 2α
(16)

ε0 =
α(4mn3

+ 3mn2
+ 1)

m2n4 + 4mn3 + 6mn2 + 4mn + 1
(17)

It is found that κ0 and ε0 have the same form as those in Eqs. (12)
and (13) for the 2D bilayer beam except the difference of m value.
If we set α = 0, Eq. (16) will reduce to that obtained by Finot and
Suresh [34] or Freund and Suresh [23], where a linear relation
between κ0 and α was found like in the Timoshenko’s solution.
They made a detailed discussion of the effects of m and n on
the curvature κ0 [34]. However, the spherical shape only exists
for relatively small α before bifurcation occurs at the curvature
κ0 ∼

h2

L2
[8]. Thus, the linear κ0 should be accurate enough to

characterize the bending at this stage [34].
For anisotropic active strains with α1 = α, α2 = 0 and νp = νa,

the curvatures can be obtained as

κ1 = κ1h

=
6αmn (1 + n)2

m2n4 + 4mn3 + 6mn2 + 4mn + 1 + 8αmn3 + 6αmn2 + 2α
,

κ2 = 0

(18)

It is noted that Eq. (18) is the same as Eq. (12) for the bilayer
beam. When νp ̸= νa, we can prove that κ2 = 0, but the lengthy
expression of κ1 is omitted here. Fig. 3a shows the curvatures
obtained by the different methods for the case of anisotropic
active strains. In the FE solution, the curvature is calculated by
using the least square method based on the coordinates of eight
neighbor nodes of the origin (x, y, z) = (0, 0, 0) (Fig. 1). Three
groups of FE results with different combinations of the Poisson’s
ratios are presented in the figure, which are almost identical,
indicating that the Poisson’s ratio has little effect on the bending
curvature for the case of anisotropic active strain. Therefore, in
the following calculations, we take the Poisson’s ratio as νp =

νa = 0.49 in all situations. The theoretical results in Eq. (18) show
a good agreement with FE results, while a large deviation from
the linear solution can be observed for large active strains.

For more general cases, we employ the third-order approxi-
mation in Eq. (7) and can obtain four nonlinear equations from
Eq. (8) to solve κ1, κ2, ε1 and ε2 numerically. Fig. 3b shows the
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Fig. 2. Comparison of the modified solution with FE solution and traditional Timoshenko solution. (a–b) Comparisons of the curvature κ versus the active strain α for
different m = Ep/Ea and n = hp/ha in 2D bilayer beam. (c) The distribution of Timoshenko’s solution κT with respect to m and n. When log(mn2) = 0 (i.e., mn2

= 1
or E1h2

1 = E2h2
2), κT takes the maximum value κT ,max = 1.5.

Fig. 3. Comparison of the theoretical and FE solutions for bending curvature of a 3D bilayer plate, including (a) the anisotropic (α1 = α, α2 = 0) and (b) the isotropic
active strains (α1 = α2 = α). The other parameters for the calculations are m = n = 1, p = 20.

theoretical and FE results for the special case with isotropic active
strains of α1 = α2 = α. The shape bifurcation from a spherical
shape (κ1 = κ2) to a cylindrical shape (κ1 > κ2 ≈ 0) can be

observed from both the results of theoretical analysis and FE sim-
ulations. It can be easily inferred that another stable state κ1 >

κ2 ≈ 0 exists due to the symmetry of the bilayer. The bending
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curvatures after bifurcation show a reasonable agreement be-
tween the two methods. This indicates that the theoretical model
captures the basic features of the bending process of the bilayer
despite the difference in the location of the bifurcation point. The
error in the theoretical analysis may arise from the assumption of
the strain distribution (Eq. (2)) and the deformed shape (Eq. (5)),
which cannot precisely characterize the out-of-plane shear strain
at large bending curvature and the non-uniform distribution of
the curvature [10,23,31,49] along the edges of the bilayer.

If we assume κ2 = 0 and νa = νp = ν, the curvature in the x
direction can be obtained as

κ1 = κ1h =
6αmn(1 + ν)(1 + mn)(1 + n)2

C(m, n, ν, α)
(19)

where

C = m3n5
+ 5m2n4

+ 4m3n3
+ 4m2n2

+ 4mn3
+ 6mn2

+ 5mn

+ 1 + α(6m2n3
+ 8m2n4

+ 2mn + 6mn2
+ 8mn3

+ 2)+

6αν(−mn − mn2
+ m2n3

+ m2n4)

As shown in Fig. 3b, Eq. (19) is able to characterize the evolution
of κ1 well at large active strains and thus can serve as a good
estimation for the bending curvature after the bifurcation under
isotropic active strains.

3.3. Phase transition in the bending process

The bending behaviors of a bilayer structure for two special
active strains are discussed in the previous sections, i.e., the
isotropic one with α1 = α2 and the anisotropic one with α1 ̸=

α2 = 0. From the analysis, we have found that a square bilayer
with isotropic active strains has two stable states after buckling.
Thus, it is interesting to check the conditions for the bistability of
a bilayer subjected to arbitrary active strains. Since the analytical
solution may induce significant errors in the analysis for these
problems due to the approximation of parametric shapes (Fig. 3b),
especially for more complicated cases, we will employ the Riks
method-based FE procedure to predict the bending behaviors
of the bilayer. In the FE procedure described in Section 2, the
displacement and the scalar factor δ are updated automatically
after the pattern tensor α is given. To capture the phase transition
from bistability to monostability, we assign different α in two
loading steps, that is, stage 1: isotropic expansion with α1 =

α2 = 1, and stage 2: anisotropic expansion or shrinkage in the
y direction with α1 = 1 or −1 and α2 = 0.

A square bilayer is first considered with the parameters m =

n = 1 and p = 20. The evolutions of κ1 and κ2 in the two
loading stages are plotted in Fig. 4a and b, respectively, where
the method of computing κ is the same as that used in Fig. 3.
At the initial step with α1 = α2 < 0.026, the bilayer shows
a spherical shape with κ1 = κ2. Then at point A, it bifurcates
into a cylindrical shape with κ1 > κ2 ≈ 0 until the end of the
first loading stage at point B (total of 60 increment steps in the
first loading stage). In the second loading stage, α1 increases or
decreases based on the value of α1 assigned in the simulation,
while α2 is kept as a constant of 0.073. If α1 = 1, the bilayer
continues to bend to a large degree as shown in blue lines and
configuration F in Fig. 4. If α1 = −1, α1 shows a nonmonotonic
change (the red lines). It first decreases until point C (α1 = 0.043),
then it increases to the point D (α1 = 0.173), and finally it
decreases again. If α1 keeps decreasing at point C, the bilayer
jumps from configuration C to E, with a reverse in the bending
direction. Similarly, the bilayer snaps from configuration D to F
if α1 continues to increase at point D. The point C or D on the
equilibrium path is known as the limit point, where the change
rate of the active strain is vanishing [47,48]. The active strains at

points C and D, i.e., (α1, α2) = (0.043, 0.073) and (0.173, 0.073),
are the critical values where the phase transition from bistability
to monostability of the bilayer occurs. It can be found that the
structure has two stable paths (excluding the unstable path from
C to D) when α1 ∈ [0.043, 0.173], while it has only one stable
path for other values of α1. In Fig. 4b, the energy sketches are
plotted at several representative points. In the bistable region,
the energy curve presents two local minima (e.g., S1 and S2 at
point B), while at PB one of the local minima evolves into a
metastable point (e.g., state S2 at point C or state S1 at point D).
Given a small perturbation to the bilayer at state S2 of point C,
it exhibits a sharp shape jump from state S2 to S1. The evolution
of the nominal strain energy (Eq. (15)) in Fig. 4d indicates that
the snap-through process involves a strain-energy release from
high-energy states (C and D) to low energy states (E and F). It is
noticed that the shape transition at the PB II releases more energy
than that at PB I, since it needs a larger active strain to trigger the
snap-through instability.

From the representative results, we can conclude that the
snap-through instability of a bilayer only occurs at the PBs. This
is a requisite to realize achievable bilayer-based actuators with
shape jump. The specific active-strain route for triggering this
process is dependent on the initial state of the bilayer. As shown
in Fig. 4c with the two stable equilibrium paths plotted simulta-
neously, if the bilayer is initially in the state with κ1 > κ2 ≈ 0
(the black lines), we need to decrease α1 (shrinkage) to push
the structure out of the bistable region and achieve shape jump
at the PB I. On the contrary, if the bilayer has an initial state
κ2 > κ1 ≈ 0, increasing α1 to the PB II leads to the snap-
through to the state κ1 > κ2 ≈ 0, but increasing α2 or decreasing
α1 cannot realize this process. In the monostable region, the
maximum curvature κmax = max(κ1, κ2) for different α1 and
α2 is easily identified, i.e., κmax = κ2 when α1 < 0.043, and
κmax = κ1, when α1 < 0.173. In the bistable region, the larger
curvature between the two can be identified directly from Fig. 4c.
For the isotropic expansion with α1 = α2 = 0.073 (point P in
Fig. 4c), the two stable states represent the same deformed shape.
Also, it is noticed that κ1 > κ2 when α1 > α2, and vice versa
(Fig. 4c).

Fig. 5a gives two other groups of κmax with α2 = 0.049 and
0.101. It can be seen that κmax increases with both α1 and α2.
To characterize the bending efficiency, we define the average
curvature as

κ̃ = κmax/(α1 + α2) (20)

which represents the bending degree per unit active strain ap-
proximately. For the 2D beam case, κ̃ is reduced to κM/α (Eq.
(12)). From Fig. 5b, κ̃ reaches its maximum value when α1 = 0
for all different choices of α2, while it goes to a minimum value
when α1 = α2. The increase rate of κ̃ for α1 < α2 is much
larger than that for α1 > α2. This means that the bilayer has
the maximum bending efficiency for the anisotropic active strain
with α1 = 0 and α2 ̸= 0 and the minimum for the isotropic one
with α1 = α2. The maximum κ̃ at α1 = 0 shows a deviation
from 1.5, which should be induced by the nonlinear terms in the
curvature expression in Eq. (18).

4. Phase diagram and optimal actuation for bilayer structures

The phase diagram of the bending behaviors of a bilayer and
its optimal actuation for desired shapes are of great interest
for exploring its applications. With the selected geometry and
material properties, we have performed intensive numerical sim-
ulations for the active-strain actuated snap-through buckling in
bilayer structures, and identified the corresponding phase tran-
sition boundaries and maximum bending curvature with respect
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Fig. 4. Curvature evaluation and solution bifurcation for a square of bilayer under various active strains. (a–b) Evolution of κ1 and κ2 with respect to the active
strain α1 . The black lines are the results in the first loading stage with α1 = α2 = 1, and the blue and red lines are the results in second loading stage with α1 = 0,
and α2 = 1 or −1. The PBs are identified based on the curvature evolution in the second loading stage. (c–d) Evolution of the two equilibrium paths, i.e., κ1 > κ2
and κ1 < κ2 , and the nominal strain energy, U , with respect to α1 in the second loading stage, where α2 is fixed as 0.073. Other parameters are m = n = 1, p = 20.
PB stands for the phase boundary. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Evolution of (a) the maximum curvature κmax and (b) the average curvature κmax/(α1 +α2) versus α1 for different fixed α2 . Other parameters are m = n = 1,
p = 20. The inflection point on each curve represents the case with isotropic active strain, i.e., α1 = α2 .

to various combinations of α1 and α2. Fig. 6 presents the PBs for
the bistability and the contour plot of κmax and κ̃ . It can be seen
that the phase point (α1, α2) in the bistable region (e.g. point A)
corresponds to two stable configurations (Fig. 6a) and two energy

wells on the energy landscape (Fig. 6b). As the point shifts to the
PB (e.g., point B), one stable configuration evolves into a meta-
stable, and a small external perturbation leads to a shape jump
from state S1 to the other state S2. In the monostable region, the
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Fig. 6. Phase diagram for bistability of the bilayer structure with m = n = 1, p = 20. The distribution of (a) the maximum curvature κmax and (b) the average
curvature κ̃ . The stable configurations and energy landscapes at points A (0.073, 0.073), B (0.043, 0.073), and C (0, 0.073) are presented in the plots. PB stands for
the phase boundary.

Fig. 7. The phase boundaries for the bistability of a bilayer for different (a) ratios of elastic moduli m, (b) ratios of thicknesses n, (c) overall sizes-to-thickness ratio
p, and (d) length-to-width ratios q.

structure has only one stable state and a global minimum on the
energy landscape (e.g., point C).

Without loss of generality, we take a state S1 with κ1 > κ2 as
an example to demonstrate the guidelines for generating snap-
through instability by choosing an optimal active-strain route. In
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such a case, the only possible configuration after snap-through
can be generally represented by state S2 with κ1 < κ2. Therefore,
we vary α1 and α2 to make the phase point move across the
first PB (Fig. 6a), at which the energy well of S1 disappears and
the bilayer snaps to state S2 with κ1 < κ2. On the contrary,
if the structure is in an initial state S2 with κ1 < κ2, we vary
the values of α1 and α2 so as to move the phase point to the
second PB to achieve snap-though. Nevertheless, no snap-through
is involved at the PB if the phase point (α1, α2) is initially located
in the monostable region. Therefore, shape evolution from the
monostable region to the bistable region must be continuous. It
can be easily concluded that, for an arbitrary phase point P with
κ1 > κ2 in the bistable region, various active-strain routes exist
to achieve snap-through on the 1st PB, such as L1, L2 and L3
shown in Fig. 6b. Among these routes, there exists a unique short-
est route L2 perpendicular to the PB, which can be considered
as the easiest way to generate snap-through from initial state
P. Therefore, the phase diagram provides a guidance to achieve
efficient shape jump for the bilayer-based, bistable actuators.

As depicted in the contour plot of Fig. 6, the maximum cur-
vature κmax increases with both α1 and α2 while the average
curvature κ̃ assumes the maximum value when one component
of the active strains is vanishing. These results are consistent
with the analysis in Fig. 5. For instance, given an active-strain
combination satisfying α1 + α2 = const, when α1 = 0 or α2 = 0,
κ̃ gets its maximum value, indicating that the anisotropic active
strains with a vanishing component provide the most efficient
actuation for the bending behaviors. This finding may explain
the wide existence of anisotropic structures in plant tissues,
such as the scale of pine cone [50] and the seed capsule of ice
plant [14]. The microscale anisotropic structures in these plant
tissues enable an anisotropic swelling in response to external
humidity change, resulting in the maximum degrees of bending
or unbending by absorbing the minimum amount of water in
order to help spread their seeds easily. Thus, these anisotropic
microstructures in plants could be an optimized result during
their long-term natural evolution.

The PBs in phase diagrams are controlled by the different pa-
rameters m, n, p and q, where q = L1/L2 is the length ratio. It can
be seen from Fig. 7a that the elastic moduli m of the two layers
has little effect on the PBs, while the other three parameters n,
p and q affect the variation of the PBs significantly. The variation
of the thickness ratio causes a shrinkage of the bistable region
and shifts the bifurcation point to higher values. On the other
hand, increasing p gives rise to the enlargement of the bistable
region, and shifts the bifurcation point to lower active strain.
Such change in the bifurcation point is consistent with theoretical
results reported in literature [8], where the bifurcation curvature
or the bifurcation surface stress is inversely proportional to p2.
Similar results on the bifurcation point can also be found in [39].
In addition, it is noted that the PBs for different m, n, and p shown
in Fig. 7a–c are symmetric with respect to the line α1 = α2, while
the PBs for q = 1.25 and 1.33 are not in a symmetric shape due
to the loss of the symmetricity of the bilayer. The bistable region
shrinks when q increases, indicating that the larger the length-to-
width ratio of the bilayer, the more difficult it is to transit into a
bistable state. From the phase diagram discussed above, we can
easily find the shortest active-strain route from a specific phase
point to achieve the snap-through as discussed before. It should
be noted that this current model is not accurate for extremely
large active strains or significant change of mechanical properties
involved, which is out of the scope of this work and will be
studied in the future.

5. Conclusions

In this work, we have studied the bending behaviors of soft
active bilayer structures with focus on their phase transition
from bistability to monostability and their optimal actuation. The
traditional Timoshenko’s solution for the 2D bilayer beam has
been modified to include the nonlinear effect of axial stretch
on bending curvature. The FE results based on the Riks method
have shown a good agreement with the theoretical solutions. The
snap-through phenomena generated by anisotropic active strains
are investigated based on the curvature and energy landscape
from numerical simulations. We have also summarized the strain
route to achieve the shape jump from a specific initial state. The
phase diagrams for different geometrical parameters and material
properties are presented for potential applications. It is found
that anisotropic active strains can generate the optimal bending
of bilayer plates. The theoretical model and phase diagram pre-
sented in this work will provide a guidance for future design of
high-performance bilayer-based actuators and machines.
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