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Abstract
Printed electronics are widely used in wearable tech, IoT, and medical devices, and reliable sintering methods are essential 
for achieving optimal electrode conductivity. However, existing sintering models are often based on trial-and-error or past 
experience, highlighting the need for a reliable numerical model to improve the process. Traditional phase-field sintering 
models are limited by factors such as small mesh size requirements, high computational expenses for large-scale simulations, 
and high mesh sensitivity. In this article, we introduce a new meshfree phase field model based on the recent hot optimal 
transform meshfree (HOTM) method to simulate nanoparticle sintering processes efficiently and accurately. We use the 
Galerkin method to develop variational forms for the Cahn–Hillard and the Allen–Chan equation of the phase-field model. 
In addition, we apply the Local maximum entropy (LEM) shape function to construct a Node-Material Point framework. 
Finally, we present two efficiency improvement schemes and MPI parallel computation that enable the model to perform 
large-scale simulations. After several performance tests, we demonstrate its efficiency and accuracy by presenting both 2D 
and 3D simulation cases in comparison to actual sintering behaviors of the nanoparticles.

Keywords  Particle sintering · Meshfree method · Phase-field model · Printed electrodes

1  Introduction

Printed electronics have attracted increasing attention 
from academia and industry due to their promising merits, 
including low-cost, scalable manufacturing, compatibility 
with flexible substrates, ease of integration, and generat-
ing less waste [1–3]. In particular, it is suitable for devel-
oping large-area flexible and stretchable electronics and 
energy devices, such as flexible displays, smart labels, ani-
mated posters, smart clothing, and human–machine inter-
faces [4–10]. These electronics are usually developed with 
printed electrodes from nanoparticle-based inks, which 

need a post-printing sintering process to enable the high 
conductivity required for the devices. Currently, most sin-
tering processes in printed electronics are based on the try-
and-error method or previous experience and estimation. 
The optimization step is usually rough and less accurate. 
To improve the efficiency and effectiveness of the sintering 
process for nanoparticle-based printed electrodes, a highly 
efficient numerical model and simulation method is crucial 
to optimize the sensing conditions for different applications 
to reduce manufacturing costs and save energy.

The sintering process can be divided into different stages. 
At the very beginning of the sintering, particles come into 
contact at specific points. As sintering initiates, these contact 
points serve as nuclei for interface growth. In addition, the 
formation of these interfaces will lead to unbalanced sinter-
ing traction, causing rapid rigid body motion. Consequently, 
the vacancy ratio experiences a fast decline. This initial 
phase is termed the “initial sintering stage.” As particles 
arrange themselves into a structure where most experiences 
balanced rigid body forces, the sintering process transitions 
into a phase of consistent, steady progress known as the 
“steady sintering stage.” During this phase, the reduction in 
vacancy ratio is primarily driven by solid diffusion, which 
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occurs at a slower pace compared to the initial stage [11, 
12]. From a thermodynamic point of view, the main driving 
effect of the sintering process is the release of the surface 
energy of the material, which is a positively correlated func-
tion of local curvature. Therefore, the sintering phenomena 
can be explained as the system thermodynamic behavior 
being elevated by the increased temperature and the sys-
tem energy tending to minimize itself, which will lead to 
the internal mass migration that lowers the overall surface 
energy. The specific observations of the mass migration 
include the vanishing of small surface texture, forming of 
the dihedral angle on the boundary of interfaces, and small 
particles fast merging into large ones. In addition, a frac-
tion of the released surface energy is transferred to interface 
bonding, where interparticle sintering stress is generated. 
Many factors control the sintering process, including sur-
face energy, interface energy, temperature, and the shape 
of the particles [13–15]. The numerical model should be 
able to simulate the above sintering behaviors accurately 
and efficiently.

The earliest numerical works were mainly based on the 
constitutive relation between local surface curvature and 
diffusion advection [11, 16–19]. Inspired by those works, 
various improved methods were proposed. For example, 
the Molecular Dynamic (MD) simulation is one of the 
most widely used approaches to study the sintering process 
[20–24]. In this method, the surface energy is expressed by 
explicitly simulating every atom of the particles, thus, the 
MD model is only suitable to study local interface neck-
ing or sintering of a limited number of particles due to the 
constraint of computational power. Discrete-element method 
(DEM) simplifies each particle in the model to a separate 
spherical node that interacts with one another [25–27]. Since 
the sintering stress was related to particle distance, the shape 
of the particles could only be a sphere in their model, limit-
ing the accuracy of the particle morphology. Besides those 
methods, some non-physical-constitutive-based methods 
such as Cellular Automata and Monte-Carlo were also devel-
oped to mimic the sintering behaviors [28–30].

Compared with the above models, the phase-field sin-
tering model has demonstrated promising performance in 
solving this problem. Jing et al. [31] proposed the first 
phase-field sintering model, in which the form of free 
energy in terms of both order parameters and concentra-
tion was proposed. Wang et al. [32] further introduced 
rigid body motion into the computation model. Chocka-
lingam et al. [33] investigated the influence of the coeffi-
cients in the governing equations. They suggested that the 
solid diffusion coefficient should obey the Arrhenius equa-
tion, and then investigated how the temperature change 
and size ratio affected the simulation using two-particle 
sintering cases. The scale of the geometry is proportional 
to the total number of particles Np . In addition, the number 

of governing equations equals to Np + 1 . Therefore, the 
overall computation expense is O(Np

2) , which makes it 
difficult to perform large-scale simulations. In addition, 
Termuhlen et al. [34] reported a simulation work based 
on Wang’s model [32], in which they used a technique 
that a cutoff range is defined for the particles with the 
same phase so that the Np can be limited, thus large-scale 
simulation is possible. This approach might damage the 
robustness of the model since the cutoff range condition 
depends on the problem and may not be assured when 
the geometry changes. Hötzer [35] presented a large-scale 
model simulating green body sintering, in which chemical 
potential and temperature are coupled.

The phase-field model may be implemented within the 
framework of finite-difference method (FDM), finite-ele-
ment method (FEM), and many others. Tonks et al. [36] 
proposed an adaptive discretization scheme dedicated to 
phase-field models with structured mesh. However, due 
to the small scale of phase interface and boundary thick-
ness compared to the geometry, ideally the global mesh 
size for phase-field models must be close to the bound-
ary thickness in the standard FEM or FDM scheme, which 
leads to high computation intensity and mesh sensitivity. 
In fact, when using FEM, the development of the diffusion 
boundary can vary for structured meshing with different 
textures, even if the mesh size is the same [37]. To address 
these issues, meshfree methods provide a flexible spatial 
discretization scheme [38]. In this study, we are inspired 
by the hot optimal transform meshfree (HOTM) method 
[39–43] and propose a meshfree phase-field sintering model 
using the node-material point framework implemented in 
HOTM. In this method, we adopt two sets of points, mate-
rial points and nodes, for the spatial discretization of the 
problem domain. The order parameters and concentration 
of solid and vacancy phases are defined at the nodes, while 
driving forces are computed on the material points. This 
framework employs the local maximum entropy (LME) 
shape function, which has a tunable nodal search range to 
initialize the connectivity map among material points and 
nodes accordingly. The LME shape function is an accu-
rate and robust approximation scheme [44, 45], which has 
been verified for phase-field interface problems [46, 47]. 
Furthermore, we employ the Gaussian-based LME shape 
function, which enables high-order approximation of non-
linear functions with reduced amount of nodes. On the 
other hand, to achieve accurate predictions of vacancy dis-
tribution and porosity in printed electronics, a substantial 
number of particles must be simulated, demanding highly 
efficient computational schemes. We presented two effi-
ciency improvement methods to overcome this challenge. 
One method reduces computation intensity by leveraging 
the LME material point framework, while the other handles 
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the computation complexity of problems involving a large 
number of particles.

This paper is organized as follows: the governing equa-
tion of the model is first introduced, followed by the explana-
tion of spatial discretization and time discretization. The two 
efficiency improvement methods are then presented. After 
that, the model is verified by testing the sintering necking 
of two particles. Finally, the sintering behaviors of both 2D 
and 3D cases are evaluated and discussed in comparison 
with experimental observation.

2 � Numerical model

2.1 � Governing equations

In this work, we adopt Wang’s model [32] as the base model. 
The variable to be solved is defined as � ∈ RNp the order 
parameters, and � ∈ R1 the concentration, which are con-
tinuously changing over the computation domain. The con-
centration � represents the spatial state of either solid or 
vacancy, 1 for solid, and 0 for vacancy. The order parameter 
� , essentially a vector with dimension equal to the num-
ber of particles, stands for the spatial state of phase. In this 
work, �(�), � = 1, 2,… ,Np is used to denote the �-th ele-
ment of � . In addition, the order parameters can be written 
as � =

[
�(1) �(2) … �(Np)

]
 . �(�) = 1 stands for the 

position being occupied by the �-th particle (Fig. 1). The 
sintering model depicts the system free energy F as

where the inner free energy density f is

where �� and �� are the boundary coefficients for concentra-
tion and order parameters, respectively. In the expression of 
f (�, �) , A, B are constant coefficients.

The governing equations of the two types of variables are 
descriptions of their driving force, i.e., the time derivative. 
The governing equation of the order parameter � is referred 
as Allen–Cahn equation, while the one of concentration � is 
referred as Cahn–Hillard equation. The model further con-
siders the rigid body motion. An extra velocity representing 
body motion is introduced. Therefore, the governing equa-
tions are

(1)

F(�, �) = ∫
⎡
⎢⎢⎣
f (�, �) +

1

2
���∇��2 + 1

2

Np�
�=1

���∇�(�)�2
⎤
⎥⎥⎦
d3r,

(2)

f (�, �) =A�2(1 − �2) + B

�
�2 + 6(1 − �)

�
�

�(�)2−

4(2 − �)
�
�

�(�)3 + 3

��
�

�(�)2

�2⎤
⎥⎥⎦
,

Fig. 1   Schematic diagram of the 
concentration and order param-
eter distribution along the center 
line. The concentration and 
order parameters are continu-
ous variables. Along the normal 
direction on the boundary or 
the interface, the values of con-
centration and order parameters 
change smoothly from one state 
to another accordingly
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and

where L is the boundary mobility constant, and D(�, �) is the 
concentration diffusion coefficient. It is defined by

where Dvol , Dvap , Dsurf  , and Dgb are diffusivity for 
solid, vapor, surface, and interface, respectively, and 
Φ(�) = �3(10 − 15� + 6�2).

In Eqs. (3) and (4), vadv ∈ R3 and v�,adv(�) ∈ R3 are the rigid 
body motion advection velocities. The velocities are generated 
due to the interface force, which will apply force and torque to 
the particles. The volumetric sintering force density is

where

In Eqs. (6) and (7), �0 is the characterized grain bound-
ary density, k is the stiffness coefficient, and c is the order 
parameter threshold. The setting of these coefficients ensures 
that only the particle interfaces contribute to the sintering 
force. The force and torque applied on the �-th particle is 
then solved as

Here, r(�) = ∫
Ω
r�(r, �)dr3∕V(�) is the position of the center 

of �-th particle, where V(�) is the volume of the particle. The 
rigid body motion advection velocity is obtained by overlap-
ping two advection velocity fields which are proportional to 
the sintering force and torque:

(3)
��

�t
= ∇ ⋅

(
D(�, �)∇

�F(�, �)

��
− �vadv

)
,

(4)
��(�)

�t
= −L

�F(�, �)

��(�)
− ∇ ⋅ [�(�)v�,adv(�)],

(5)
D(�, �) =DvolΦ(�) + Dvap[1 − Φ(�)] + Dsurf�(1 − �)+

Dgb

∑
�

∑
�≠��

�(�)�(��),

(6)b(�) = k
�
�≠�

(� − �0) ⟨�(�), �(�)⟩ [∇�(�) − ∇�(�)],

(7)⟨𝜂(𝛼), 𝜂(𝛽)⟩ =
�

1 if 𝜂(𝛼)𝜂(𝛽) > c,

0 else.

(8)F(�) = ∫Ω

b(�)dr3,

(9)T(�) = ∫Ω

[r − r(�)] × b(�)dr3.

(10)
v�,adv(r, �) =

1

V(�)

[
mtF(�) + mrT(�)

×

[
r − r(�)

]]
�(r, �),

where mt and mr are mobility constants for force and torque, 
respectively. The concentration advection velocity is then 
solved as

Since Eq. (3) is a conserved equation of concentration, a flux 
potential of concentration can be defined as

Then, Eq. (3) is rewritten as

The weak form of the governing equations is then derived. 
The standard Ritz–Galerkin method is employed for the pro-
posed phase-field model. We first define the bilinear forms 
for arbitrary spatial scalar g and vector v as

where � ∈ H1(Ω) is the test function for scalar. H1(Ω) is the 
classical Sobolev Space. Combined with Eqs. (1) and (2), 
Eqs. (13) and (4) are then reformatted as

and

where �� and ��(�) are the test functions for � and �(�) , 
respectively. Equations (15) and (16) are the weak forms 
of the system. It should be noted that when initializing the 
geometry, enough space is left between the particles and 
the boundary of the computation area to prevent them from 
contacting each other. In the applications presented in this 
work, no material is transferring through the boundary of 
the computational domain, so the insulation, i.e., zero-flux, 
boundary condition is applied to the geometry boundaries.

2.2 � Spatial discretization

This work employed the same spatial discretization 
scheme introduced within the HOTM framework, i.e., 

(11)vadv(r) =
∑
�

�(�)v�,adv(r, �).

(12)W(�, �) =
�F(�, �)

��
=

�f (�, �)

��
− ��∇

2�.

(13)
��

�t
= ∇ ⋅ (D(�, �)∇W(�, �) − �vadv).

(14)

⎧⎪⎨⎪⎩

< g,𝜙 >= ∫Ω

g𝜙dv,

< v,∇𝜙 >= ∫Ω

v ⋅ ∇𝜙dv

(15)
⟨
𝜕𝜌

𝜕t
,𝜙𝜌

⟩
+ < D∇W,∇𝜙𝜌 > − < 𝜌vadv,∇𝜙𝜌 >= 0,

(16)

<
𝜕𝜂(𝛼)

𝜕t
,𝜙𝜂(𝛼) > + < L

𝜕f

𝜕𝜂(𝛼)
,𝜙𝜂(𝛼) > + < L𝜅𝜂∇𝜂(𝛼)

− 𝜂(𝛼)v𝜂adv(𝛼),∇𝜙𝜂(𝛼) >= 0,
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the node-material point framework based on the local 
maximum entropy (LME) approximation [48]. The com-
putational domain is discretized into two sets of points, 
material points and nodes. Within the original HOTM 
framework, the parameters related to geometry, such as dis-
placement, velocity, and acceleration are stored at nodes, 
while the material properties, strains and stress are carried 
by material points. In this particular application, the com-
putational domain is fixed, and the particles move due to 
the sintering in the domain. Thus, we made the according 
modifications. The problem variables, including the order 
parameters and phase concentration, are stored on each 
node, while the material points only serve as integration 
points to calculate the driving forces. We denote the LME 
shape function of a-th node with Na(x) , and the material 
point index as p. Since the LME shape function possesses 
the property of Gaussian decay [44], a search range ha 
is set for interpolating node value to the material point, 
beyond which the shape function Na(x) is considered to be 
zero. The search range takes form as ha = h

√
−log(�0)�a , 

where h is the nodal spacing, � a controllable parameter, 
and �0 the cutoff tolerance. Then, for each material point, 
a domain NH(xp) = {xa ∈ Mp ∶ |xa − xp| ≤ ha} is defined 
which contains all the contributing nodes. The discretiza-
tion scheme is shown in Fig. 2. Therefore, the values and 
gradient of order parameters and concentration on material 
points are approximated as

where Ap denotes that all indices of node inside NH(xp).
The bilinear form Eq. (14) is then written as

where wp is the weight of the material point. On the right-
hand-sides of Eqs. (15), and (16), the integration is then 
solved using the weighted summation of the solved value 
on material points as shown in Eq. (14). With this setup, 
the weak form Eqs. (15) and (16) are rewritten into spatial 
discretized form as

where

In Eqs. (20) and (21), Ma is a set of material points such that 
node a is inside its search range,

is the nodal lumped volume, and

(17)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�p(�) =
�
a∈Ap

�a(�)Na(xp),

�p =
�
a∈Ap

�aNa(xp),

∇�p(�) =
�
a∈Ap

�a(�)∇Na(xp),

∇�p =
�
a∈Ap

�a∇Na(xp),

(18)

⎧
⎪⎪⎨⎪⎪⎩

< g,𝜙 >≈
�
p

�
a∈Ap

wpgp𝜙aNa(xp),

< v,∇𝜙 >≈
�
p

�
a∈Ap

wp𝜙avp ⋅ ∇Na(xp)

(19)
(
��

�t

)

a

= F�,a,

(
��(�)

�t

)

a

= F�,a(�),

(20)
F�,a =

1

ma

∑
p∈Ma

wp

[
−Dp,n∇Na,p ⋅ ∇Wp

+�n,p∇Na,p ⋅ vadv,p

]
,

(21)

F�,a(�) =
1

ma

∑
p∈Ma

wp

[
− LNa,p

(
�f

��(�)

)

p

+ ∇Na,p

⋅ (−L��∇�p(�)+

�p(�)v�,adv,p(�))

]
.

(22)ma =
∑
p∈Ma

wpNa(xp),

(23)∇Wp =
∑
a∈A

Wa∇Na(xp),

Fig. 2   Schematic of the node-material-points framework. The 
order parameters � and concentration � are stored on the nodes. 
The values of � and � are interpolated at the material point xp using 
the values on the nodes within the search range NH(xp) . Then, the 
driving forces are solved on the material points
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is the concentration potential gradient on the material points 
where

To solve the material point rigid body advection velocities 
vadv,p and v�,adv,p(�)) , Eqs. (6) to (11) need to be discretized. 
Under the current framework, Eqs. (8) and (9) are solved by 
accumulating the material point value as

where

is the material point sintering body force density. Then, the 
form of material point rigid body advection velocities are 
solved as

and

The derivative of the inner energy density in terms of con-
centration and potential in Eqs. (20) and (21) are

Equations (21) and (20) are the discretized nodal driving 
force. Equation (17) can be simply substituted into Eqs. (16) 
to (31), so the nodal driving forces are essentially the func-
tions of nodal order parameters and concentration.

(24)Wa =
1

ma

∑
p∈Ma

wp

[
Na,p

(
�f

��

)

p

+ ��∇Na,p ⋅ ∇�p

]
.

(25)F(�) =
∑
p

wpbp(�),

(26)T(�) =
∑
p

wp

[
rp − r(�)

]
× bp(�),

(27)

bp(�) = k
∑
�≠�

(�p − �0)
⟨
�p(�), �p(�)

⟩ [
∇�p(�) − ∇�p(�)

]
,

(28)

v�,adv,p(�) =
1

V(�)

[
mtF(�) + mrT(�) × [r − r(�)]

]
�p(�),

(29)vadv,p(�) =
∑
�

�p(�)v�,adv,p(�).

(30)

(
�f

��(�)

)

p

=12B
[
(1 − �p)�p(�) − (2 − �p)�

2
p
(�)

+�p(�)
∑
�

�2
p
(�)

]
,

(31)

(
�f

��

)

p

=A(4�3
p
− 6�2

p
+ 2�p) + B

(
2�p − 6

∑
�

�p(�)
2

+4
∑
�

�p(�)
3

)
.

2.3 � Time discretization

Since the RHS of Eqs. (15) and (16) are high-order nonlinear 
in terms of the order parameters, an explicit second-order 
Runge–Kutta method is employed for accurate and efficient 
time discretization. The current time is denoted as tn . Com-
bined with the spatial discretization scheme, the fully dis-
cretized equations are yielded as

where tn+
1

2 denotes an internal time between tn and tn+1 intro-
duced by second-order Runge–Kutta. Fn

�,a
 , Fn

�,a
 , F

n+
1

2

�,a  , and 
F

n+
1

2

�,a  , the driving force on tn and tn+
1

2 , are solved by substitut-
ing the nodal value of concentration and order parameters 
on the corresponding time step into Eqs. (20) and (21). Lee 
et al. proposed a stable criterion of the maximum time step 
length for diffusion problems [49], which implies that our 
algorithm is stable when Δt ≤ d2

min
∕(2L��) , where Δt is the 

time step, and dmin is the global minimum nodal distance. To 
ensure the stability of our implementation, we take 1/10 of 
the calculated value as the time step.

2.4 � Meshfree efficiency improvement

In classical FEM or FDM, the mesh size for simulation is 
required to be small enough to capture the phase boundary 
and interfaces accurately. During the simulation, the bounda-
ries and interfaces are possible to develop at any position 
of the geometry, thus, the small mesh size requirement is 
applied globally, which largely increases the computational 
cost. As a result, traditional FEM or FDM often struggle 
with resource-intensive problems in phase-field models. To 
overcome this shortcoming, we present a meshfree efficiency 
improvement method, which takes advantage of the proper-
ties of the LME material point framework.

In Eq. (17), the order parameters and concentration 
and their gradients �p(�), �p,∇�p(�),∇�p of a certain mate-
rial point p are solved using the nodal values from only 
the corresponding contributing node set Ap . The driving 
force is solved using only material point information as 
input in Eqs. (20) and (21). However, when all nodal val-
ues within Ap are equal, the spatial gradient of the vari-
ables at the material point ∇�p(�),∇�p vanishes, resulting 

(32)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
n+

1

2

a (�) = �n
a
(�) +

1

2
F

n
�,a
(�)Δt,

�
n+

1

2

a = �n
a
+

1

2
F

n
�,a
Δt,

�n+1
a

(�) = �
n+

1

2

a (�) +
1

2
F

n+
1

2

�,a (�)Δt,

�n+1
a

= �
n+

1

2

a +
1

2
F

n+
1

2

�,a Δt,
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in the right-hand sides of Eqs. (21) and (20) to be zero. 
This case corresponds to the state of Ap completely con-
tained in the vacancy or inner particle area, where the 
calculation of driving force gives trivial solutions.

Based on the above observation, we present the fol-
lowing efficiency improvement scheme. When the value 
of ∇�p(�) and ∇�p are solved using Eq. (17) on the begin-
ning of each timestep, iterate through the material points 
to check if ||∇�p,n|| < 𝜖𝜂 and |∇𝜌p| < 𝜖𝜌 , where �� and �� 
are two given tolerances. If both of them are smaller than 
the tolerance, the material point is then deactivated and 
the solution on it will be skipped. Ideally, the material 
points at the vacancy or inner particle areas are deacti-
vated, while only those near the interface and boundary 
are activated, where the gradient of � and � are non-zero. 
This leads to a significant acceleration of the calcula-
tion. Furthermore, since only a small fraction of material 
points are activated, more material points can be initial-
ized, and a smaller search range can be employed, thereby 
improving accuracy.

2.5 � Efficiency improvement of the order parameters

In the phase-field sintering model, the nodal degree of 
freedom is Np + 1 . Assuming a constant N0 , the average 
number of nodes contained in a single particle for a given 
average node spacing, the total number of nodes required 
for Np particles is Np × N0 . As a result, the system degree 
of freedom is O

(
(Np + 1) × Np × N0

)
 . This leads to a com-

putational complexity proportional to N2
p
 , which poses a 

significant challenge when simulating large numbers of 
particles.

However, it is noticed that a certain phase � , if �(�) = 0 , 
does not contribute to the driving force solution for any phase. 
Furthermore, in the vacancy area, all order parameters are 
zero, while in the inner particle area, only one order param-
eter is non-zero. In addition, the number of non-zero phases 
on the boundary or interface is less than three. Based on this 
observation, we propose the following efficiency improvement 
method: After solving Eq. (17), pass only the non-zero phases 
in � to Eqs. (21) and (20), so that only the relevant phases 
are solved and all other trivial solutions are skipped. This 
is achieved by defining order parameters as key-value maps 
with overloaded algebraic rules of operation. In this way, the 
optimized model performs the same calculations as an ordi-
nary model, but uses less memory for the order parameter and 
solves O(1) equations instead of O(Np) on each material point. 
Notably, since each particle has a unique phase index, no spe-
cial cutoff range is required for the advection solving, as it is 
in [34]. The algorithm including the efficiency improvement 
methods is shown in Table. 1.

3 � Performance tests

To test the performance of the model, we present several 2D 
test cases. The 2D geometries are initialized using triangle 
meshes. The nodes of the triangle mesh are directly used as 
the nodes in this model. The material points are initialized 
at the barycenters of the triangles.

3.1 � Two symmetric particles sintering

The 2-D sintering of two equal particles with the same diam-
eters is frequently used as a validation example of the model 
in previous works [32, 33, 35]. By modifying the diffusion 
potential coefficients Dvol , Dvap , Dsurf , Dgb , different sintering 
patterns can be observed. The minimum global concentra-
tion potential is expected to form at the endpoints of the 
necking interface, leading to a transfer of concentration 
towards this region and causing an increase in the interface 
length. Because of the diffusion mechanism, the diffusion is 
likely to decrease as the local curvature reduces during this 
process. Analytical studies suggest that the neck length X 
and the initial diameter of the particles D follow the relation 
X

D
= Ktc , where c < 1 is the exponent and K is the diffusion 

coefficient related to current material properties.
The diameter of the two particles is 40 nm . We discre-

tize the computational domain into 9104 nodes and 17,830 
material points. The logarithm results of test cases under 
different diffusion modes are shown in Fig. 3 and the con-
centration contours of � = 0.5 are shown in Fig. 4. The coef-
ficients are defined in Table. 2 same as defined in [32]. For 
all four cases, the results regress to a straight line very well, 
denoting that the necking obeys the analytical results. The 
case Tvol+vap and Tvol+vap+gb are close to each other, while the 
case Tvol+vap+surf and Tvol+vap+gb+surf are close to each other. 
This observation is coincident with Ref. [35], though the 
detailed forms of diffusion potentials are defined differently. 
The comparison of c and analytical value gain from Ref. [15] 
is shown in Table 3.

3.2 � Nodal spacing test

In this section, different average nodal spacings are tested 
using the two particles sintering as the test case. The 
geometries of this section are initialized from uniform 
equilateral triangle meshes, with initial mesh sizes of 2.0, 
1.5, 1.0, and 0.5 nm for the four respective cases. As the 
nodal spacing matches the mesh size in the equilateral 
triangle mesh, we label the cases based on their mesh 
sizes. The node counts for these cases are 1450, 2546, 
5800, and 23,000, while the material points total 2744, 
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4884, 11,286, and 45,372. The particle diameter stands 
at 40 nm . The results are plotted in Fig. 5, from which 
the following observations are gained. The concentration 
profiles along the necking interface are converging as the 

averaging nodal spacing decreases. The interface is not 
well resolved for the 2.0 and 1.5 nm cases, leading to the 
deviated results from the small average nodal spacing 
cases.

Table 1   Algorithm Algorithm

Step 1: Set n = 0 . Initialize nodal coordinates xa,n , material point xp,n , and neighbor-
hood NH(xp) . Calculate the LME shape functions Na(x) . Initialize nodal 
value �n

a
 , �n

a

Step 2: Update the material points using
�n
p
(�) =

∑
a∈Ap

�n
a
(�)Na(xp),

�n
p
=
∑

a∈Ap
�n
a
Na(xp),

∇�n
p
(�) =

∑
a∈Ap

�n
a
(�)∇Na(xp),

∇�n
p
=
∑

a∈Ap
�n
a
∇Na(xp).

Step 3: For every material point, do:
If ||∇�p,n|| < 𝜖𝜂 and |∇𝜌p,n| < 𝜖𝜌

deactivate the material point,
Else, activate the material point.

Step 4: Second-order Runge–Kutta iteration:
(a) Solve Fn

�,a
 and Fn

�,a
 from Eqs. (20) and (21).

(b) Solve �
n+

1

2

a = �
n
a
+

1

2
F

n
�,a
Δt, and

   �
n+

1

2

a = �n
a
+

1

2
F

n
�,a
Δt.

(c) Update �
n+

1

2

p  , �
n+

1

2

p  , ∇�
n+

1

2

p  , ∇�
n+

1

2

p .

(d) Solve F
n+

1

2

�,a  and F
n+

1

2

�,a  from Eqs. (20) and (21).

(e) Update �
n+1
a

= �
n+

1

2

a +
1

2
F

n+
1

2

�,a Δt, and

   �
n+1
a

= �
n+

1

2

a +
1

2
F

n+
1

2

�,a Δt.
Step 5: Set n = n + 1 . Go to Step 2 until the maximum number of iterations is reached.

Fig. 3   The logarithm relation of necking length and time. All four test cases regress to a line. the values of c for different diffusion patterns are 
the regressed gradient
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3.3 � Search range test

Recall the form of nodal search range of the LME shape 
function which is ha = h

√
−log(�0)�a  , where the coeffi-

cient h is an adjustable value. The choice of h decides the 
nodes-material points connectivity table, but the results 
should not be sensitive to the choice of h. The symmetric 
sintering example is initialized with different values of 
h and FEM. The contour lines of concentration � = 0.5 
at t = 50 for all the test cases are shown in Fig. 6. The 
coincidence of the contour lines indicates that changing 
the value of h did not affect the solution significantly. The 
exponential coefficient c obtained from the FEM case is 
0.1576, and for h = 1.0, 5.0 and 10.0, it is 0.1573, 0.1607 
and 0.1607, respectively.

Based on the result from Sect. 3.2, for the best per-
formance and computation efficiency, we suggest that the 
average nodal spacing and the search range should both be 
set values close to the interface thickness. The thickness 
can be estimated using the following equation [50]:

where finterf is the value of f in the interfaces. The estimated 
value is 0.9014 for this work. Notice that rather than a strict 

(33)linterf =
1

|d��∕dx|x=0 =

√
finterf

��
,

Fig. 4   a The initial concentration distribution of the symmetric particles sintering. b Contour line of � = 0.5 for different diffusion patterns

Table 2   Coefficients 
specification

Coefficients Value

A 16.0
B 1.0
L 10.0
�� 10.0
�� 1.0
Dgb 0.4
Dvol 0.01
Dsurf 4.0
Dvap 0.001
mt 500.0
mt 1.0
k 100.0
�0 0.9816
c 0.14

Table 3   Simulation results and analytical values of neck growth 
exponent

c 1/c Analytical 
value of 
1/c

Tvol+vap 0.1952 5.1241 5
Tvol+vap+gb 0.1935 5.1670 6
Tvol+vap+surf 0.1586 6.3034 7
Tvol+vap+gb+surf 0.1573 6.3572 –
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criterion, the estimation serves merely as a guiding point. 
The nodal distance and search range are tuned to give desir-
able resolution while maintaining acceptable computational 
expenses.

3.4 � Two uneven particles sintering

When two particles with a significant size difference undergo 
sintering, concentration transfers from the smaller particle 
to the larger particle due to the diffusion mechanism. As a 
result, the volume of the smaller particle decreases, eventu-
ally leading to complete merging with the larger particle. 
The test case was initiated with two particles of diameter 
20 nm and nm . The geometry employed is the same as the 
first test case. Figure 7 displays the shapes of the particles 
at different time intervals, clearly showing the merging of 
the smaller particle into the larger one. The area curve dem-
onstrates that the rate of decrease is higher at the beginning 
and end of the process, with a relatively slower rate during 
the intermediate period, which is consistent with the findings 
reported in Ref. [33].

3.5 � Mesh sensitivity test

The performance of the traditional FEM is limited by the 
meshing quality. Moreover, the solution of the FEM phase-
field model can be interfered with by the meshing pattern 
even if the geometry is a structured regular mesh [37]. While 
reducing mesh size can decrease mesh sensitivity, it also 
increases computational costs, particularly for large-scale 
simulations. However, the current model updates the con-
nectivity table based on the search range and weights of 
the LME shape function, making it feasible to work with 
even very low-quality local meshes. Here we investigate the 
effects of different mesh quality on the simulation results 
between FEM and the proposed approach. As a test case, the 
spheroidization of a single square particle is used, where the 
square particle gradually becomes round due to decreasing 

Fig. 5   The results at t = 10 . a–d |�| distribution and nodal configuration at the necking area for varying average nodal spacing: a 2.0, b 1.5, c 1.0, 
and d 0.5. e The concentration distribution along the necking interface starting from the center point of the interface

Fig. 6   The contour line of concentration � = 0.5 at t = 50 for the 
FEM and h = 1.0, 5.0, and 10.0, respectively
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surface energy. We use three different meshes as the mesh 
for FEM as well as to initialize the nodes and material points 
in the proposed approach. One mesh is uniform, the other 
two are ill-conditioned. It is important to note that geometry 
meshing is only used as input to initialize material points 
and nodes [39, 48]. The geometry of the uniform nodal con-
figuration case consists of 1840 nodes and 3510 material 
points. Meanwhile, the two ill-conditioned nodal configu-
ration cases involve 3600 and 3225 nodes, along with 6962 
and 6068 material points, respectively.

Figure 8 displays the result obtained using a regular 
nodal configuration, where the spheroidization of the 
square particle is clearly observed. Figure 9 demonstrates 
cases with the same initial concentration distribution but 

different nodal configuration. The elements in the initial-
ization meshes are ill-shaped with small Jacobian. The 
meshfree model accurately simulates the process, produc-
ing the correct result as the regular nodal configuration. 
However, the FEM cases do not converge due to the low 
meshing quality. The final diameters of the regular mesh 
case, pattern 1 case, and pattern 2 case are 17.562, 17.671, 
and 17.672 nm , respectively, with a relative error of less 
than 0.5%. The values are calculated from the horizontal 
and vertical measurement of contour � = 0.5.

The five tests conducted above confirm that this mesh-
free phase-field model is accurate and robust. It is able to 
solve problems even if the initial input geometry is very 

Fig. 7   a Distribution of ��� = ∑
�(�(�))

2 of the uneven particles sintering at t = 0, 5, 30, 100, 115, 120 , respectively. b Area of smaller particle 
versus time

Fig. 8   Spheroidization initialized using a fine regular mesh
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irregular, with which the FEM fails. Therefore, the model 
has been successfully validated.

4 � Simulation results

For the sintering model, the results are much more validated 
in large simulation cases. In this work, one 2D case and four 
3D cases are studied. The coefficients used for all of the 
cases are decided based on Wang’s work [32] which ensures 
a physically meaningful ratio of different types of diffusions. 
They are shown in Table 2. The geometry for 2D case is 
initialized using triangle mesh, while the counterpart of 3D 
case is initialized from tetrahedron mesh. The mesh nodes 
are taken as the nodes for this model, and the material points 
are initialized at the barycenters of the elements. The initial 
geometry is generated with a DEM code, in which particles 
have linear contact forces filling into given shape contain-
ers. After the DEM simulation is done, the initial value of 
concentration and order parameters are assigned for each 
particle using the same approach in Ref. [34] as

(34)

�(r, �) =
1

2

(
1 − tanh

(
d(�) − R(�)

�

))
, � =

∑
�

�(�),

where d(�) is the distance between the current position and 
the �-th particle, R(�) denotes the radius of the particle, and 
� is a boundary thickness coefficient which is picked to make 
the initial boundary thickness reasonable. The value of � is 
1.0 in the work.

Some observations are shared among all the results both 
in 2D and 3D. The early stage necking is observed, i.e., the 
interface area rapidly increases while the sharp concave or 
convex area disappears. After that in the steady sintering 
stage, the inner vacancy area becomes spherical or nearly 
spherical, then gradually decreases to zero. The vacancy 
ratio, a parameter denoting the volumetric fraction of 
vacancy inside the fabricated structure, has been computed 
for all the scenarios presented in this study. The methodol-
ogy employed to solve for the vacancy ratio draws inspira-
tion from the approach outlined in Ref. [34]. To determine 
the vacancy ratio, a defined box area within the particle 
pack, with a volume of Vbox , is considered. The vacancy 
ratio, denoted as Rv , is then calculated using the equa-
tion:Rv = 1 − ∫

Ωbox
�dv∕Vbox . The dimensions and placement 

of this box are strategically chosen to maximize its volume 
while ensuring complete coverage within the particle pack 
during the sintering process. This ensures that the computed 
vacancy ratio is representative of the entire system’s behav-
ior and characteristics.

Fig. 9   Result initialized using different nodal configuration. The FEM tests are not converging. The meshfree model is giving the correct result
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Parallel solving is implemented using OpenMPI. The 
processors being used are Intel Xeon Gold 6134 for all the 
cases. The number of cores being used is 5 for the 2D case 
and 30 for all the 2D cases.

4.1 � 2D case

A 2D case is used to test the model’s capability of solving 
the 2D problems and clearly show the optimized approaches. 

Fig. 10   Results of the 2D case 
t = 0.0 and t = 5.0 . a The 
contour plot of the norm of 
order parameters |�| . Merging 
of the particles and forming of 
the interfaces can be observed. 
b The material points are acti-
vated along the boundary and 
interfaces

Fig. 11   Number of activated material points and vacancy ratio of the 2D case versus time. The number of activated material points decreases 
because the system energy is decreasing and the activated material points are tracking the surface and interface
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100 particles are initiated in a 105 nm × 125 nm box. The 
total number of nodes is 53,889 and the number of material 
points is 106,848. The box used to calculate the vacancy 
ratio is a square centered at the geometry with side length 
equal to 80 nm . In Fig. 10, the development of order param-
eters as well as the activated material points is shown. 
The merging and necking of the particles and forming of 
dihedral angles are observed. The activated material points 

distribution is marked using the green area in the figures. 
The activation threshold for the material points is set as 
�� = 0.00001, �� = 0.00001 . As expected, the activated 
material points are tracking the interfaces and the particle 
boundaries. In addition, the total number of the activated 
material points decreases over time, for the boundary and 
interface area is decreasing with the system free energy.

Fig. 12   Contour of concentration � = 0.5 . The index a–d denote 
Case A, B, C, and D, respectively. In addition, the number 1, 2 and 3 
denote simulation time t = 0.0 , t = 5.0 and t = 15.0 . Case A, B, and 

D are using the same average particle diameter and variance, while 
the variance of case C is larger
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The total number of degrees of freedom is 5,442,789. 
With all the efficiency improvement methods off, the simula-
tion took 1118 min, while the time taken for the optimized 
scenario is 108 min, which is almost 10 times faster. The 
relative difference � =

∑
a ��0,a−�opt,a�∑

a ��0,a�
 is less than 0.0014 for all 

the output results, where �0,a and �opt,a are the nodal concen-
tration for cases with efficiency improvement off and on, 
respectively. Therefore, we claim that the efficiency 
improvement method is validated (Fig. 11).

4.2 � 3D cases

The computational domain is a 100 nm × 100 nm × 125 nm 
box, consisting of 5,132,460 material points and 942,587 
nodes. The box used for vacancy ratio solving is a cube 
with side length equal to 80 nm placed at the center of the 
geometry. The initiation of particles is solved from a DEM 
scheme giving compact packing of point-contacting spheres. 
There are collectively four cases provided. Case A, B, and D 
are initiated using spheres with mean radius Rave = 10.0 nm 
and standard difference � = 1.0 . Case C is initiated with 
Rave = 12.0 nm and � = 3.0 for testing different particle size 
distributions. The initial vacancy ratio of case A, B, C, and 
D are, respectively, 0.351, 0.350, 0.277, 0.621. In addition, 
the numbers of particles are 143, 150, 134, and 85 for case 
A, B, C and D, respectively.

Figure 12 shows the contour of concentration � = 0.5 for 
the cases at different times. The necking between particles 
and the overall shrinkage of the geometry is well observed. 
Case A and B are initialed with the same distribution set-
ting, i.e., the same average radius and standard difference, 
to check if the model is reacting consistently to similar 
input. The initial vacancy ratios are very close. In addi-
tion, the development of vacancy ratios are coincident with 
each other as expected. Case C is initialized using radius 

distribution with a larger standard variation. The complete 
absorption of small particles into large ones is observed. In 
addition, the steady sintering stage is reached earlier than in 
case A and B and the sintering efficiency is lower. For case 
D, the initial vacancy ratio is lower than in the three other 
cases. From the contour plot, it is observed that the parti-
cles aggregate locally instead of moving toward the overall 
geometric center, resulting in a low vacancy ratio decreas-
ing rate and not asymptotically converging to zero (Fig. 13).

5 � Conclusion

In conclusion, we have presented a meshfree scheme that 
effectively solves the rigid body motion included in the 
particle sintering phase-field problem. Our use of the LME 
shape functions based on the material points framework as 
a spatial discretization scheme has proven to be reliable, 
and we have developed two efficiency improvement meth-
ods to enhance the accuracy and efficiency of the simu-
lation. Five performance test examples are conducted to 
demonstrate the accuracy of the model and its ability to 
solve problems even with initial geometries that cause the 
FEM to fail. Our observations of sintering behaviors in 
both 2D and 3D cases aligned with different stages of real-
world processes. Specifically, in the 2D case, we clearly 
showed the area occupied by activated material points, 
which decreased as the simulation entered the steady 
sintering stage. In the 3D case, we observed shrinkage 
and merging, and the vacancy ratio decreased faster for 
larger initial packing rates. We also found that for loose 
cases, the vacancy ratio did not converge to zero. Mov-
ing forward, we recommend two possible future devel-
opment directions for this model. One direction involves 
implementing a fully thermomechanical coupling under 

Fig. 13   Vacancy ratio versus time for 3D cases A, B, C, and D. Case A and B are coincident with each other
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the HOTM framework, where the total system free energy 
is related to the phase field, temperature, and deformation 
simultaneously. Furthermore, since the proposed model 
presents accurate and stable solutions for the phase-field 
sintering problems that consist of both the Allen–Cahn 
equation and the Cahn–Hillard equation, it is promising 
that the proposed framework can be employed to address 
other phase-field problems. Moreover, the efficiency 
enhancement techniques proposed in this study are also 
applicable for other problems. Potential models that could 
benefit from the proposed approach  encompass the grain 
growth models, dendritic growth models, membrane mod-
els, and multi-phase flow models, which will be taken into 
account in the future.
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